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Introduction to the Clustering Techniques

Clustering is a fundamental task in data analysis, used to group similar data points together. This section
discusses two common clustering methods relevant to us: hard clustering and smooth clustering.

Hard clustering, also known as crisp clustering, assigns each data point to exactly one cluster.
Smooth clustering, or fuzzy clustering, allows data points to belong to multiple clusters with varying
degrees of membership.

Table 1: Comparison of Hard and Smooth Clustering
Feature Hard Clustering Smooth Clustering
Assignment One cluster per point Multiple clusters per point
Boundaries Sharp and distinct Overlapping
Algorithms K-Means, Hierarchical Fuzzy C-Means, GMM
Interpretability Straightforward More complex
Sensitivity to Noise Sensitive to outliers More robust
Applications Image Segmentation, Doc-

ument classification
Market segmentation,
Bioinformatics, Speech
Processing

K-means for example is a centroid-based method, so if the centers overlap? Then ??

Figure 1: Overlapping clusters shown as overlapping gaussians
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Brief Overview of the Gaussian Mixture Models

Gaussian Mixture Models are probabilistic techniques used for classification of data. It assumes data points
to be generated like some sort of gaussian distribution which is quite common in nature.
The method/ technique goes like

� Step 1: Randomly initiate Gaussian(s) from the dataset.

� Step 2: Calculate the responsibility (probability of belongingness) for each point. This indicates the
extent to which the data point relates to each of the Gaussian(s).

� Step 3: Consider the responsibility calculated in the previous step to determine the most appropriate
Gaussian for that point.

� Step 4: After checking the probability and maintaining a particular threshold for the same, assign
the Gaussian(s). Repeat this process until there is no change in the Gaussian(s), indicating that the
solution has converged.

GMM is an iterative method like K-means with difference being use of parameters like Mean and Vari-
ance, instead of Centroid.
If we increase the dimensions, however, we get Mean Vector and Covariance matrix respectively.

For using Gaussian Mixture Models (GMM), we use an algorithm known as Expectation-Maximization
Algorithm, popularly known as EM Algorithm.

GMM using EM Algorithm - A rigorous approach

Consider a gaussian distribution, N (x|µ, σ2) given as :

N (x|µ, σ2) =
1√
2πσ2

e−(x−µ)2/2σ2

Now this is Univariate. For Multivariate gaussian distribution we have :

Nm(−→x |−→µ , ε) =
1

(2π)d/2|ε|1/2
exp

{
−1

2
(−→x −−→µ )

T
ε−1 (−→x −−→µ )

}
where,
d is dimension
−→x is data vector
−→µ is mean vector
ε is Covariance matrix

Now, we consider the Maximum Likelihood Estimation.
Suppose I have data points and I can represent them as Gaussian Distribution(s).
Now, we got to consider the log of the Gaussian distribution, take derivative and theb equatre to zero to get
the values of the parameters −→µML and εML.

ln Nm(−→x |−→µ , ε) = −d

2
ln(2π)− 1

2
ln|ε| − 1

2
(−→x −−→µ )T ε−1(−→x −−→µ )

Now taking derivatives and equating to zero :

∂ lnNm(−→x | −→µ , ε)

∂−→µ
= 0

=⇒ −→µML =
1

N

N∑
n=1

−→x n

∂ lnNm(−→x | −→µ , ε)

∂ε
= 0

=⇒ εML =
1

N

N∑
n=1

(−→x n −−→µML)
T (−→x n −−→µML)
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where, N → Number of samples/ data points.

Now suppose the density(GMM) is basically given by a probability density function p(x):

p(x) = π1f1(x) + π2f2(x) + ...+ πkfk(x)

where k is the number of Gaussian(s), and fk(x) are the probability density function of the individual
Gaussian(s) and πi are mixing-coefficients or weights.
Thus, we can say that GMM is the weighted sum of the mixtures of the Gaussian(s) where the weights are
determined by the mixing coefficients , or its the Linear superposition of Gaussian(s).
Now,

K∑
i=1

πi = 1

So,

p(x) =

K∑
i=1

πifi(x)

= π1Nm(x | µ1, ε1) + π2Nm(x | µ2, ε2) + ...+ πkNm(x | µk, εk)

=

K∑
i=1

πiNm(x | µi, εi)

Now we got to use EM Algorithm as we cannot use the Maximum Likelihood Estimation to get µ and ε in
case of GMM, as there will be no convergence to a particular solution.

So, we use normalization (0 ≤ πk ≤ 1) and Positivity
(∑K

i=1 πi = 1
)

We can think of the mixing co-efficients as prior probabilities of the components.

For a given x, we calculate the responsibilities or the posterior probabilities given as γk(x).
Using Bayes’ rule:

γK(x) = P (K|x) = P (K)P (x|K)

P (x)

Here, P (K) is class prior.
P (x|K) is class conditional probability.
P (x) is probability prior or the unconditional prior.

P (k|x) = πkN(x|µk, εk)∑K
j=1 πjN(x|µj , εj)

where πk = Nk

N ,
and Nk is the total number of points assigned to cluster k.

EM Algorithm is thus an iterative optimization technique.

Estimation Step : For given parameter values, we compute the expected values of the latent variable
( responsibility).
Maximization Step :Update parameters of the model based on the latent variable calculated using Maxi-
mum Likelihood method.
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EM Algorithm for Gaussian Mixture Models

1. Initialize the means µj , covariance matrix εj and the mixing coefficients πj .
You may wanna evaluate the initial values by likelihood or randomly.

2. E-Step :
Evaluate responsibility using current parameter values.

γj(x) =
πkN (x|µk, εk)∑K
j=1 πjN (x|µj , εj)

3. M=Step :
Re-estimate the parameters using the current responsibilities.

µj =

∑N
n=1 γj(xn)xn∑N
n=1 γj(xn)

εj =

∑N
n=1 γj(xn)(xn − µj)(xn − µj)

T∑N
n=1 γj(xn)

πj =
1

N

N∑
n=1

γj(xn)

4. Evaluate Log Likelihood.

lnP (x | µ, ε, π) =
N∑

n=1

ln

(
K∑
i=1

πi N (xn | µi, εi)

)

5. If there is no convergence, bgo back to step 2.

Python Code: GMM Clustering with Misclassifications

We now see how the code for GMM looks like. We here use the inbuilt python library Scikit-Learn to do the
things which uses the EM Algorithm.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.cluster import KMeans

4 from sklearn.mixture import GaussianMixture

5

6 # Generate overlapping data (two Gaussian distributions)

7 np.random.seed (42)

8 n_samples = 300

9

10 # Cluster 1: Mean at (0, 0), spread

11 mean1 = [0, 0]

12 cov1 = [[1.0, 0.6], [0.6, 1.0]]

13 data1 = np.random.multivariate_normal(mean1 , cov1 , n_samples)

14

15 # Cluster 2: Mean at (2, 2), similar spread with overlap

16 mean2 = [2, 2]

17 cov2 = [[1.0, 0.6], [0.6, 1.0]]

18 data2 = np.random.multivariate_normal(mean2 , cov2 , n_samples)

19
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20 # Combine the two clusters to create the dataset

21 X = np.vstack ([data1 , data2])

22

23 # K-means clustering (Hard clustering)

24 kmeans = KMeans(n_clusters =2, random_state =42)

25 kmeans_labels = kmeans.fit_predict(X)

26

27 # GMM clustering (Soft clustering)

28 gmm = GaussianMixture(n_components =2, covariance_type=’full’, random_state =42)

29 gmm.fit(X)

30 gmm_labels = gmm.predict(X)

31 gmm_probs = gmm.predict_proba(X)

32

33 x_min , x_max = X[:, 0]. min() - 1, X[:, 0]. max() + 1

34 y_min , y_max = X[:, 1]. min() - 1, X[:, 1]. max() + 1

35 xx , yy = np.meshgrid(np.linspace(x_min , x_max , 500),

36 np.linspace(y_min , y_max , 500))

37

38 Z_kmeans = kmeans.predict(np.c_[xx.ravel (), yy.ravel ()]).reshape(xx.shape)

39 Z_gmm = gmm.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

40

41 # Identify misclassified points by K-means

42 misclassified = (kmeans_labels != gmm_labels)

43

44 # Plots

45 fig , axes = plt.subplots(1, 2, figsize =(15, 6))

46 axes [0]. contourf(xx, yy, Z_kmeans , cmap=’viridis ’, alpha =0.3)

47 axes [0]. scatter(X[:, 0], X[:, 1], c=kmeans_labels , cmap=’viridis ’,

48 edgecolor=’k’, s=40)

49 axes [0]. scatter(X[misclassified , 0], X[misclassified , 1],

50 color=’red’, marker=’x’, s=80, label=’Misclassified ’)

51 axes [0]. scatter(kmeans.cluster_centers_ [:, 0],

52 kmeans.cluster_centers_ [:, 1], c=’red’,

53 marker=’o’, s=100, label=’Centroids ’)

54 axes [0]. set_title(’K-means Clustering with Misclassifications ’)

55 axes [0]. legend(loc=’best’)

56

57 axes [1]. contourf(xx, yy, Z_gmm , cmap=’viridis ’, alpha =0.3)

58 scatter = axes [1]. scatter(X[:, 0], X[:, 1], c=gmm_probs [:, 1],

59 cmap=’coolwarm ’, s=40, edgecolor=’k’)

60 axes [1]. set_title(’GMM Clustering with Soft Probabilities ’)

61 fig.colorbar(scatter , ax=axes[1], label=’Probability of Cluster 2’)

62

63 plt.tight_layout ()

64 plt.show()

The output obtained is :
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Figure 2: KMeans Vs Gaussian Mixture Model Code Example

Applications in Speech Processing

Speech Recognition

� Feature Extraction: Use GMMs to model the distribution of feature vectors extracted from speech
signals (e.g., Mel-frequency cepstral coefficients, MFCCs).

� Hidden Markov Models (HMMs): GMMs are often used as the observation probability density
functions in HMMs for speech recognition. Each state of the HMM can be modeled by a GMM,
capturing the variability in speech across different speakers or phonemes.

Speaker Recognition

Model the voice characteristics of different speakers using GMMs. Each speaker can be represented by a
GMM trained on their speech data, allowing for differentiation between speakers based on their unique vocal
characteristics.

Voice Activity Detection (VAD)

Use GMMs to model the distribution of features in speech and non-speech segments. The EM algorithm can
help optimize the GMM parameters for distinguishing between voice and background noise.

Speech Synthesis

In statistical parametric speech synthesis, GMMs can model the relationship between linguistic features and
acoustic features, facilitating natural-sounding speech generation.

Gaussian Mixture Models for Speech Recognition

Gaussian Mixture Models (GMMs) are widely used in speech recognition tasks, particularly in modeling the
distribution of feature vectors extracted from speech signals. The key steps involved in using GMMs for
speech recognition are outlined below.
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GMM for Speech Recognition

1. Feature Extraction: Extract features from the speech signal, such as Mel-frequency cepstral
coefficients (MFCCs):

MFCCt =

N∑
n=1

Cn log

(
M∑

m=1

Wm|Xm(t)|2
)

(1)

whereXm(t) is them-th frequency bin of the Fourier transform at time t, Cn are the coefficients,
and Wm are the filter bank weights.

2. Model Training: Train the GMM using the Expectation-Maximization (EM) algorithm. The
algorithm iteratively updates the parameters of the GMM:

� E-step: Estimate the responsibilities γj(x).

� M-step: Update the parameters µj , εj , and πj

3. Decoding: Use the trained GMM to compute the likelihood of a sequence of feature vectors:

P (X|Model) =

T∏
t=1

p(xt) (2)

where X = {x1,x2, . . . ,xT } is the sequence of feature vectors.

4. Decision Making: Apply a decision rule (e.g., Maximum Likelihood, Viterbi decoding) to
determine the most likely word or phoneme sequence:

W ∗ = argmax
W

P (W |X) (3)

where W represents the hypothesis word sequence.
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