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Abstract

Maxwell’s equations, fundamental in the field of electromagnetism, are often
expressed in various formulations to provide different insights into the underly-
ing physical principles. This paper explores and compares different formulations
of Maxwell’s equations, including the vector algebraic differential form, poten-
tial form, 4-vector form, and differential geometric form. By delving into these
different representations, we aim to deepen our understanding of the profound
nature of Maxwell’s equations and their significance in describing the funda-
mental principles governing electromagnetic phenomena. Only basic knowledge
of linear algebra is assumed.

1 Introduction

Let us start with Maxwell’s equations in a charge-free vacuum. Now, let the
electric field be E=(t, Ex, Ey, Ez) and the magnetic field be B=(t, Bx, By, Bz)
. These are the two vectors that we are gonna be dealing with throughout this
paper.

The first equation, also known as Gauss law of Electric Field in charge-free
vacuum is:

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
= 0 (1)

The second equation, also known as Gauss law of Magnetic field is:

∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0 (2)

The third equation, or Faraday’s law, can be shown in three spatial coordi-
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nates (x, y, z) as:

∂Ey

∂z
− ∂Ez

∂y
=

∂Bx

∂t
, (3a)

∂Ez

∂x
− ∂Ex

∂z
=

∂By

∂t
, (3b)

∂Ex

∂y
− ∂Ey

∂x
=

∂Bz

∂t
. (3c)

The fourth equation , also known as Ampere’s law , for charge -free vacuum
can be shown in three spatial coordinates (x, y, z) as :

∂By

∂z
− ∂Bz

∂y
= −∂Ex

∂t
, (4a)

∂Bz

∂x
− ∂Bx

∂z
= −∂Ey

∂t
, (4b)

∂Bx

∂y
− ∂By

∂x
= −∂Ez

∂t
. (4c)

Now that we have seen how these equations look in charge-free equations , it’s
time to introduce to some weird yet fascinating ways of rewriting these equa-
tions.Like the potential form :

∇2V+
∂

∂t
(∇ ·A) = − ρ

ϵ0
, (5a)

∇ · (∇×A) = 0, (5b)

−∇2A+ ϵ0µ0
∂2A

∂t2
= −∇

(
∇ ·A+ µ0ϵ0

∂V

∂t

)
+ µ0J (5c)

In 4-vector form, the Maxwell’s equations can be rewritten as :

∂µF
µν = µ0J

ν , ∂µG
µν = 0 (6)

where, ’F’ is Field Tensor and the ’G’ is Dual Tensor of EM Wave.
And in Differential geometric form , the equations can be written in a very
concise form as :

∗d ∗ F = J, dF = 0 (7)

Let’s dive deep into these equations and see how we derive these .

2 Maxwell’s equations in Differential form

These are the Maxwell equations in Vector Algebra Notation ( Differential form
, to be precise ).

∇ ·E =
ρ

ε0
(8)
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Also known as Gauss law of Electrostatics , the first equation states that diver-
gence of Electric field (E) at any point in space is equal to the charge density(ρ)
divided by permittivity of free space ( ϵ0 ).

∇ ·B = 0 (9)

Also known as Gauss law of Magnetostatics , the second equation of Maxwell
states that divergence of Magnetic field (B) at any point is zero, indicating the
absence of magnetic monopoles.

∇×E = −∂B

∂t
(10)

Maxwell’s third equation a.k.a. Faraday’s law describes how a changing mag-
netic field induces an electric field. The curl of the electric field (E) is equal to
the negative rate of change of the magnetic field (B) with respect to time.

∇×B = µ0

(
J+ ε0

∂E

∂t

)
(11)

This equation combines Ampère’s circuital law with Maxwell’s addition. It
states that the curl of the magnetic field (B) is equal to the sum of the current
density (J) and the displacement current (ϵ0

∂E
∂t ), where ε0 is the permittivity of

free space and µ0 is the permeability of free space. Now we assume that there
is charge-free vacuum , so equations (8) and (11) become :

∇ ·E = 0 (12)

, and

∇×B =
∂E

∂t
(13)

Note : In all the above equations and equations that we are going to be dealing
with later in this paper. The symbol ∇ , also known as nabla is basically :
∇ = ( ∂

∂x ,
∂
∂y ,

∂
∂z ).

3 Maxwell’s equations in Potential form

Before we get into deriving the equations , we have to know that the potential
form allows for the formulation of the equations in terms of scalar potential(V)
and vector potential (A), which may simplify problem-solving in certain situa-
tions.
Point to be noted that some resources use the symbol ϕ in place of V that we
are going to be using here. So lets not get confused by this .
Thus, the electric field (E) can be written as :

E = −∂A

∂t
−∇V (14)

3



Now , using this equation in equation(8), we get ,

∇ · (−∂A

∂t
−∇V) =

ρ

ε0
(15)

This gives :

−∇2V −∇ · ∂A
∂t

=
ρ

ε0
(16)

or

∇2V+
∂

∂t
(∇ ·A) = − ρ

ϵ0
(17)

The magnetic field can be written only in terms of the vector potential as :

B = ∇×A (18)

. Putting this in equation (9) we get ,

∇ · (∇×A) = 0 (19)

,which is true since divergence of a curl of a vector is zero.

Now, to derive the final equation in potential form, we will use the 4th Maxwell’s
equation or equation(11). Using the equation(18) in equation(11) we get :

∇× (∇×A) = µ0

(
J+ ε0

∂E

∂t

)
(20)

This gives :

∇(∇ ·A)−∇2A = µ0

(
J+ ε0

∂E

∂t

)
(21)

Now use equation(14) here to get :

∇(∇ ·A)−∇2A = µ0

(
J+ ε0

∂

∂t

(
−∂A

∂t
−∇V

))
(22)

∇(∇ ·A)−∇2A = µ0J− µ0ε0∇
∂V

∂t
− µ0ε0

∂2A

∂t2
(23)

After rearranging , we get :

−∇2A+ ϵ0µ0
∂2A

∂t2
= −∇

(
∇ ·A+ µ0ϵ0

∂V

∂t

)
+ µ0J (24)

These equations are homogenous wave equations. Applying the Lorentz gauge
given as :

∇ ·A+
1

c2
∂V

∂t
= 0 (25)
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in equations(17) and (24) gives us the inhomogenous wave equations given as :

1

c2
∂2V

∂t2
−∇2V =

ρ

ε0
(26)

and

1

c2
∂2A

∂t2
−∇2A = µ0J (27)

4 Maxwell’s equations in 4-vector form

4.1 Introduction to tensors

Mathematically, a tensor can be represented as a multi-dimensional array of
components. Let T be a tensor with components T i1i2...in , where i1, i2, . . . , in
are indices corresponding to each dimension.

T i1i2...in (28)

4.1.1 Covariant Tensor

A covariant tensor of rank k is denoted as Ai1i2...ik . Under a coordinate trans-
formation, the components of a covariant tensor transform according to the
Jacobian matrix of the coordinate transformation.

A′
i′1i

′
2...i

′
k
=

∂xi′1

∂xj1

∂xi′2

∂xj2

. . .
∂xi′k

∂xjk

Aj1j2...jk (29)

4.1.2 Contravariant Tensor

A contravariant tensor of rank k is denoted as Bi1i2...ik . Under a coordinate
transformation, the components of a contravariant tensor transform with the
inverse of the Jacobian matrix.

B′i′1i
′
2...i

′
k =

∂xj1

∂xi′1

∂xj2

∂xi′2

. . .
∂xjk

∂xi′k

Bj1j2...jk (30)

4.2 Tensors used

First of all we note that an object can be denoted by time and spatial coordinates
as :

xµ = (x0, x1, x2, x3) = (ct, x, y, z) (31)

Differential of this is :

∂xµ = (∂x0, ∂x1, ∂x2, ∂x3) = (c∂t, ∂x, ∂y, ∂z) (32)

For example :

Aµ = (A0, A1, A2, A3) = (At, Ax, Ay, Az) = (At,
−→
A ) (33)
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and hence the differential with respect to xµ gives :

∂Aµ

∂xµ
=

1

c

∂At

∂t
+

∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
=

1

c

∂At

∂t
+ (∇ ·

−→
A ) (34)

The Electromagnetic field tensor is given as :

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 (35)

The Dual Tensor of this is given as :

Gµν =


0 Bx By Bz

−Bx 0 −Ez/c Ey/c
−By Ez/c 0 −Ex/c
−Bz −Ey/c Ex/c 0

 (36)

And the current vector in 4-form is :

Jµ = (cρ, Jx, Jy, Jz) = (cρ,
−→
J ) (37)

4.3 Derivation

To derive , first of all we have to write our Field tensor and Dual tensor in the
respective forms as :

Fµν = Fµλgλν =


0 Ex/c Ey/c Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 (38)

and

Gµν = Gµλgλν


0 Bx By Bz

Bx 0 −Ez/c Ey/c
By Ez/c 0 −Ex/c
Bz −Ey/c Ex/c 0

 (39)

Point to be noted is that we have multiplied the tensors with Levi-Civita symbol.

To derive the first equation we may use the first Maxwell equation ( equa-
tion 8 ) or the last Maxwell equation ( equation 11). Using equation (8) we get
,

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
=

ρ

ε0
(40)

This leads to :
∂F 10

∂x1
+

∂F 20

∂x2
+

∂F 30

∂x3
=

j0

ε0c2
= µ0j

0 (41)
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or
∂µF

µ0 = µ0j
0 (42)

Using equation (11) for x component ( for showing how it works. We can use
other components too ) we get ,

∂Bz

∂y
− ∂By

∂z
= µ0Jx +

1

c2
∂Ex

∂t
(43)

rearranging this , we get :

∂Bz

∂y
− ∂By

∂z
− 1

c2
∂Ex

∂t
= µ0Jx (44)

implies ,
∂2F

21 + ∂3F
31 + ∂0F

01 = µ0j
1 (45)

Solving for other components yield similar results, and hence combining all
solutions we conclude :

∂µF
µν = µ0J

ν (46)

Now comes deriving the second equation . We will use Maxwell’s second equa-
tion ( equation 9) and third equation ( equation 10).
So, firstly equation (9) can be written as :

∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0 (47)

which can be further written in terms of the dual tensor as :

∂G10

∂x1
+

∂G20

∂x2
+

∂G30

∂x3
= 0 (48)

or
∂µG

µ0 = 0 (49)

Equation(10) can be written for x component as :

∂Ez

∂y
− ∂Ey

∂z
= −∂Bx

∂t
(50)

Multiply both sides with 1
c to get :

∂

∂y
(
Ez

c
) +

∂

∂z
(−Ey

c
) +

∂Bx

c∂t
= 0 (51)

Writing this in terms of the Dual tensor we get :

∂2G
21 + ∂3G

31 + ∂0G
01 = 0 (52)

Solving for other components yield similar results, and hence combining all
solutions we conclude :

∂µG
µν = 0 (53)
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5 Maxwell’s equations in Differential Geometric
form

5.1 Introduction to the Wedge Product

The wedge product of vectors result in bivector . The symbol used is ∧.
For example :

u ∧ v = u⊗ v − v ⊗ u =

 0 u1v2 − u2v1 u1v3 − u3v1
u2v1 − u1v2 0 u2v3 − u3v2
u3v1 − u1v3 u3v2 − u2v3 0

 (54)

where u⊗ v is the outer product of u and v .

Properties of Wedge Product Operator are :

1. (a ∧ b) ∧ c = a ∧ (b ∧ c)

2. (a+ b) ∧ (c+ d) = (a ∧ c) + (a ∧ d) + (b ∧ c) + (b ∧ d)

3. u ∧ v = −v ∧ u

4. u ∧ u = 0

5. ∗(a ∧ b) = a× b ; ∗(a× b) = a ∧ b.
Here * is the Hodge Dual Operator .

5.2 Introduction the Hodge Dual Operator

The Hodge dual of a differential form ω in n dimensions is denoted by ∗ω.
The Hodge dual operator is a mathematical tool used in differential geometry
and algebraic topology. Its primary purpose is to establish a correspondence
between certain types of geometric objects, such as differential forms, and their
dual counterparts.

Properties of Hodge Dual Operator are :

1. ∗1 = dt ∧ dx ∧ dy ∧ dz ; ∗(dt ∧ dx ∧ dy ∧ dz) = −1

2. ∗dt = dx ∧ dy ∧ dz ; ∗dx = dt ∧ dy ∧ dz
∗ dy = dt ∧ dx ∧ dz ; ∗dz = dt ∧ dx ∧ dy

3. ∗(dt ∧ dx) = dz ∧ dy ; ∗(dz ∧ dy) = −dt ∧ dx
∗ (dt ∧ dy) = dx ∧ dz ; ∗(dx ∧ dz) = −dt ∧ dy
∗ (dt ∧ dz) = dy ∧ dx ; ∗(dy ∧ dx) = −dt ∧ dz
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5.3 Derivation

Since we know that the Electric and Magnetic fields are represented as three
component form like E =< E1, E2, E3 > and B =< B1, B2, B3,
We can write them in 2-form using the Wedge product as :

F = E1dx∧dt+E2dy∧dt+E3dz∧dt+B1dy∧dz+B2dx∧dz+B3dx∧dy (55)

Also, the current can be written in 1-form as :

J = ρdt− J1dx− J2dy − J3dz (56)

Now, we take the exterior derivative of F.

dF =

(
∂E1

∂y
dy ∧ dx ∧ dt+

∂E1

∂z
dz ∧ dx ∧ dt

)
+

(
∂E2

∂x
dx ∧ dy ∧ dt+

∂E2

∂z
dz ∧ dy ∧ dt

)
+

(
∂E3

∂x
dx ∧ dz ∧ dt+

∂E3

∂y
dy ∧ dz ∧ dt

)
+

(
∂B1

∂x
dx ∧ dy ∧ dz +

∂B1

∂t
dt ∧ dy ∧ dz

)
+

(
∂B2

∂y
dy ∧ dx ∧ dz +

∂B2

∂t
dt ∧ dx ∧ dz

)
+

(
∂B3

∂z
dz ∧ dx ∧ dy +

∂B3

∂t
dt ∧ dx ∧ dy

)

(57)

This gives :

dF =

(
∂E2

∂x
− ∂E1

∂y
+

∂B3

∂t

)
dt ∧ dx ∧ dy

+

(
∂E3

∂x
− ∂E1

∂z
+

∂B2

∂t

)
dt ∧ dx ∧ dz

+

(
∂E3

∂y
− ∂E2

∂z
+

∂B1

∂t

)
dt ∧ dy ∧ dz

+

(
∂B1

∂x
+

∂B2

∂y
+

∂B3

∂z

)
dx ∧ dy ∧ dz

(58)

And finally,

dF =

(
(∇× E)3 +

∂B3

∂t

)
dt ∧ dx ∧ dy

+

(
(∇× E)2 +

∂B2

∂t

)
dt ∧ dx ∧ dz

+

(
(∇× E)1 +

∂B1

∂t

)
dt ∧ dy ∧ dz

+ (∇ ·B)dx ∧ dy ∧ dz

(59)
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Using equation (9) and (10) , we get

dF = 0 (60)

Now, we are to find the second equation in differential geometric form. For that
, firstly we find the Hodge dual of F .

∗F = E1dy∧dz−E2dx∧dz+E3dx∧dy+B1dt∧dx−B2dt∧dy+B3dt∧dz (61)

Now similar to what we did above , we find the exterior derivative of *F to get
:

d ∗ F =(∇ · E)dx ∧ dy ∧ dz

+

(
∂E1

∂t
− (∇×B)1

)
dt ∧ dy ∧ dz

+

(
∂E2

∂t
− (∇×B)2

)
dt ∧ dx ∧ dz

+

(
∂E3

∂t
− (∇×B)3

)
dt ∧ dx ∧ dy

(62)

Using equations (8) and (11) here we get :

d ∗ F = ρdx ∧ dy ∧ dz − J1dt ∧ dy ∧ dz − J2dt ∧ dx ∧ dz − J3dt ∧ dx ∧ dy (63)

Again applying Hodge dual over equation above, we get,

∗d ∗ F = ρdt− J1dx− J2dy − J3dz (64)

From equation (56), we see that RHS of equation above changes as :

∗d ∗ F = J (65)

6 Conclusion

In conclusion, the derived formulations of Maxwell’s equations presented in this
study showcase the inherent mathematical beauty and versatility of these fun-
damental principles in electromagnetism. The vector algebraic differential form,
potential form, 4-vector form, and differential geometric form collectively illus-
trate the diverse mathematical expressions that encapsulate the profound nature
of electromagnetic phenomena.
In essence , the derived equations not only serve as a testament to the elegance
of Maxwell’s theory but also highlight the interconnectedness of mathematical
principles in describing the fundamental laws governing electromagnetism.
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