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Abstract

Schrödinger Equation, given by Erwin Schrödinger in 1926 is fundamental in
quantum mechanics. The equation revolutionizes our understanding of behavior
of particles at a microscopic level, providing an elegant mathematical framework
to predict probabilities of different outcomes. The equation was first published
in 1926 as ’Quantisierung als Eigenwertproblem’(Translation : Quantization as
an Eigenvalue Problem ) in the Journal ’Annalen der Physik ’.

1 Introduction

Schrödinger Equation has a wide range of applications from Physics and Chem-
istry to Biology , Finance and others.
Here in this paper we will derive the equation using the original method used
by Schrödinger in the Erste Mitteilung ( First Communication ) of his paper
using Hamilton- Jacobi’s equation .The equation is given as :

− ℏ2

2m
∇2ψ + V ψ = E (1)

Then we will see how Schrödinger used his equation for Hydrogen Atom .
We, then would see how the Non-Linear Schrödinger equation came into exis-
tence.The Non-Linear Schrödinger equation is given as :

i
∂ψ

∂t
+
∂2ψ

∂x2
+ 2|ψ|2ψ = 0 (2)

2 Deriving the Schrödinger Equation

Schrödinger used the case of Hydrogen atom ( non-relativistic and unperturbed
, just like he mentioned ).
It all starts with Hamilton-Jacobi Equation used in Analytical Mechanics :

H

(
q,
∂S

∂q

)
= E (3)
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where S is action-functional and q is just generalised coordinate.
Now, Schrödinger considers,

S = K logψ

Thus equation (3) neglecting relativistic mass variations becomes :

H

(
q,
K

ψ

∂ψ

∂q

)
= E (4)

Now since he considered particle in a conservative field . The Hamiltonian can
be written as :

H =
1

2
p2 + U

Thus, Formation of variational equations using regular cartesian coordinates
gives : (

∂ψ

∂x

)2

+

(
∂ψ

∂y

)2

+

(
∂ψ

∂z

)2

− 2m

K2

(
E +

e2

r

)
ψ2 = 0 (5)

where e is charge, m is the mass of the electron, and r2 = x2 + y2 + z2.
Our variation problem then goes like:

δJ [ψ] = δ

∫∫∫
R3

F (ψ,∇ψ, x, y, z) dx dy dz = 0 (6)

where F is a functional.
Now, we get:

δJ [ψ] = δ

∫∫∫
R3

dx dy dz

[(
∂ψ

∂x

)2

+

(
∂ψ

∂y

)2

+

(
∂ψ

∂z

)2

− 2m

K2

(
E +

e2

r

)
ψ2

]
= 0

(7)
or

δJ [ψ] = δ

∫∫∫
R3

dx dy dz

[
|ψ|2 − 2m

K2

(
E +

e2

r

)
ψ2

]
= 0 (8)

where

|ψ|2 =

(
∂ψ

∂x

)2

+

(
∂ψ

∂y

)2

+

(
∂ψ

∂z

)2

Using Integration by parts we find ,

1

2
δJ =

∫
df δψ

∂ψ

∂n
−
∫∫∫

dx dy dz δψ

[
∇2ψ +

2m

K2

(
E +

e2

r

)
ψ

]
= 0 (9)

Here, df is element of infinite closed surface over which integral is taken.
and so we find that :

∇2ψ +
2m

K2

(
E +

e2

r

)
ψ = 0, (10)
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and ∫
df δψ

∂ψ

∂n
= 0 (11)

Schrödinger in his paper stated that discrete spectrum obtained by the variation
problem corresponds to the Balmer terms of Hydrogen atom and for numerical
agreement :

K =
h

2π
= ℏ

.

∇2ψ +
2m

ℏ2

(
E +

e2

r

)
ψ = 0 (12)

This is the equation that Schrödinger derived as the equation (5) in First com-
munication. We will just rearrange this to get :

∇2ψ = −2m

ℏ2

(
E +

e2

r

)
ψ (13)

We then generalize it for any potential to get the schrödinger equation we know
about ,

− ℏ2

2m
∇2ψ + V ψ = Eψ (14)

3 Applying Schrödinger Equation to Hydrogen
Atom

We have equation (12) that can be written as :

− ℏ2

2µ
∇2ψ − e2

r
ψ = Eψ (15)

where, r =
√
x2 + y2 + z2 and µ is the reduced mass. Equation(15) can be

written as :
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+

2µ

ℏ2

(
E +

e2

r

)
ψ = 0 (16)

So, for ease we are gonna be using separation of variables method after convert-
ing this entire thing to spherical coordinate system .
Then, the wavefunction ψ would look something like :

ψ(r, θ, ϕ) = χ(r)Y m
l (θ, ϕ)

where Y m
l (θ, ϕ) is a spherical hsarmonic and the radial equation is thus :

d2χ(r)

dr2
+

2

r

dχ(r)

dr
+

(
2µE

ℏ2
+

2µe2

ℏ2r
− l(l + 1)

r2

)
χ(r) = 0 (17)
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Here, l is the orbital angular momentum quantum number and l=0,1,2,3,...
This equation has singularities in complex plane at r = 0 and r = ∞.
Since, χ(r) vanishes faster as r → 0 than r → ∞ which is a requirement for
Hilbert spaces.

Examining the singularity at r = 0 , the indicial equation is :

ρ(ρ− 1) + 2ρ− l(l + 1) = 0 (18)

The roots of this equation are : ρ1 = l , and ρ2 = −(l+ 1) , and we neglect the
second term due to negative nature.

Schrödinger then writes χ(r) as :

χ(r) = rαU (19)

such that α = l and is chosen in such a way that 1/r2 term drops out.
We substitute this in equation ( 17) to get :

d2U

dr2
+

2

r
(α+ 1)

dU

dr
+

2µ

K2

(
E +

e2

r

)
U = 0 (20)

where equation(20) is called Laplace’s equation. We can write all these as :

U” +

(
δ0 +

δ1
r

)
U ′ +

(
ϵ0 +

ϵ1
r

)
U = 0 (21)

where δ0 = 0, δ1 = 2(α+ 1), ϵ0 = 2mE
K2 , and ϵ1 = 2mµ2

K2

This will be easier to handle because now we are gonna be applying Laplace’s
transformation.
Thus, we get :

U =

∫
L

ezr(z − c1)
α1−1(z − c2)

α2−1dz (22)

which is a solution of equation (21) for a path of integration L, for which∫
L

d

dz
[ezr(z − c1)

α1(z − c2)
α2 ]dz = 0 (23)

The constants c1, c2, α1, α2 have following values and also c1 and c2 are roots of
quadratic equation :

z2 + δ0z + ϵ0 = 0 (24)

and

α1 =
ϵ1 + δ1c1
c1 − c2

, α2 = −ϵ1 + δ1c2
c1 − c2

Putting the values of δ1, ϵ1 and solving we get :

c1 =

√
−2µE

ℏ2
, c2 = −

√
−2µE

ℏ2
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α1 =
µe2

ℏ
√
−2µE

+ l + 1, α2 = − µe2

ℏ
√
−2µE

+ l + 1

Now , Schrödinger says to exclude the cases where α1 and α2 are real numbers.
This happens when

µe2

ℏ
√
−2µE

∈ R

So, we gotta assume that this criteria shouldn’t be met.
r becomes infinite through real positive values characterized by behavior of two
linearly independent solutions , U1 and U2 that are obtained by specializations
of path of integration L .
In each case he lets z come from inifity in such a direction that :

lim
z→∞

ezr = 0

i.e., R(zr) is to become negative and infinite.
In one case let z make a circuit once round the point c1 to get solution U1 and
once c2 to get solution U2.
Now, for very large values of r these two solutions are represented ( in the sense
used by Poincaré ) as :

U1 ∼ ec1rr−α1(−1)a1(e2πiα1 − 1)Γ(α1)(c1 − c2)
α2−1,

U2 ∼ ec2rr−α2(−1)a2(e2πiα2 − 1)Γ(α2)(c1 − c2)
α1−1.

(25)

Since c1 > 0, U1(r) diverges for r → ∞ We now see the case when α1 and α2,
are real integers. So we see,

µe2

ℏ
√
−2µE

= l (26)

where n is principal quantum number having positive inter values.So , Energy :

En = − µe4

2ℏ2n2
(27)

we note that in the case where α1,2 are integers, the integrand in equation(22)
is not multivalued anymore, but becomes single valued because it is raising the
complex monomials z − c1 and z − c2 to integer powers, namely:

U =

∫
L

ezr(z − c1)
n+l(z − c2)

−n+ldz (28)

We solve it to find the value of χ as :

χ(x) = xle−xL
(2l+1)
n−l−1(2x),

with x = c1r =

√
−2µE

ℏ
r

(29)
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Here , L is Laguerre polynomial given as :

Lα
n(x) =

n∑
k=0

(−x)k

k!

(
n+ α
n− k

)
(30)

So , we form our final hydrogen wavefunction as :

χ(x) = xle−x
n−l−1∑
k=0

(−2x)k

k!

(
n+ l

n− l − 1− k

)
(31)

which is exactly the form Schrödinger wrote in the original paper in 1926 (except
for our interchanging of the integers n and l according to modern nomenclature).

4 Non-Linear Schrödinger Equation

The Non-Linear Schrödinger Equation (NLSE) models an evolution equation for
slowly varying envelope dynamics of a weakly nonlinear quasi-monochromatic
wave packet in dispersive media.

The NLSE is significant in areas like quantum mechanics, Bose-Einstein con-
densates, and nonlinear optics. It predicts phenomena such as solitons—stable,
localized wave packets with applications in optical communications . Despite its
challenging analytical solutions, numerical methods help researchers study its
diverse applications in fields like plasma physics and condensed matter systems.

We will derive it from Maxwell’s and Helmholtz’s equations.
So, Maxwell’s equations for medium ( Here, optical fibres ) are given as :

∇× E = −∂tB,
∇×H = J + ∂tD,

∇ ·D = ρ,

∇ ·B = 0

(32)

where,
D = ϵ0E + P

B = µ0H +M

and P and M are induced electric and magnetic polarizations.

We now take curl of the first equation in (32) to get :

∇×∇× E +
1

c2
∂2tE = −µ0∂

2
t P (33)

Thereby eliminating B and D .
Here c is the speed of light given as 1/c2 = µ0ϵ0 in vacuum.
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We now write the Electric polarisation P as sum of Linear and Non-Linear
terms : P (r, t) = PL(r, t) + PNL(r, t) where,

PL(r, t) = ϵ0

∫ t

−∞
χ(1)(t− t0)E(r, t)dt0 (34)

PNL(r, t) = ϵ0

∫ t

−∞

∫ t

−∞

∫ t

−∞
χ(3)(t−t1, t−t2, t−t3)E(r, t1)E(r, t2)E(r, t3)dt1dt2dt3

(35)
where χ(j) is a tensor of rank j+1 , the j-th order of susceptibility.
Now consider the Non-linear term to be zero. Then we write the Fourier trans-
form of E(r,t) as :

Ê(r, ω) =

∫ +∞

−∞
E(r, t)eiωtdt (36)

and let χ̂(1)(ω) be Fourier transform of χ(1)(t). So equation(33) can be written
as :

∇×∇× Ê = ϵ(ω)
ω2

c2
Ê(r, t) (37)

such that : ϵ(ω) = 1 + χ̂(1)(ω) = (n + iαc/(2ω))2 is the frequency dependent
dielectric constant and it’s real and imaginary parts are related to refractive
index n(ω) and absorption coefficient α(ω).

Due to low optical loses in optical fibres within wavelength region of interest ,
ϵ(ω) = n2(ω). and ∇ ·D = 0.
So, we finally arrive at Helmholtz equation :

∇2Ê + n2(ω)
ω2

c2
Ê = 0 (38)

Including the nonlinear effect modifies the above equation as :

∇2Ê + ϵ(ω)k20Ê = 0 (39)

where k0 = ω/c and the dielectric constant ϵ(ω) = 1 + χ̂(1) + 3
4
d4χ(3)

dx4 |E(r, t)|2.
We solve using variable separation method here,

Ê(r, ω − ω0) = Â(z, ω − ω0)B(x, y)eiβ0z (40)

where Â(z, ω) is a slowly varying function of z and β0 is a wavefunction that
needs to be determined. After solving we get these two equations:

2iβ0∂zÂ+ (β̂2 − β2
0)Â = 0 (41)

∇2B + [ϵ(ω)k20 − β̂2]B = 0 (42)
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The wavelength β̂ is determined by solving the eigenvalue equation using the
first-order perturbation theory. We see :

β̂(ω) = β(ω) + ∆β (43)

where,

∆β =
ω2

c2
n(ω)

β(ω)

∫ +∞
−∞

∫ +∞
−∞ ∆n(ω)|B(x, y)|2dxdy∫ +∞

−∞
∫ +∞
−∞ |B(x, y)|2dxdy

(44)

Also we have to know that β̂2 − β2
0 ≈ 2β0(β̂ − β0), the Fourier transform Â can

be written as :
∂zÂ = i[β(ω) + ∆β(ω)− β0]Â (45)

Expanding β(ω) and ∆β(ω) about carrier frequency ω0 we get :

β(ω) = β(ω0) + β′(ω0)(ω − ω0) +
1

2
β”(ω0)(ω − ω0)

2... (46)

∆β(ω) = ∆β(ω0) + ∆β′(ω0)(ω − ω0) +
1

2
∆β”(ω0)(ω − ω0)

2... (47)

Replacing ω − ω0 with the differential operator i∂t and taking inverse Fourier
transform of Â we get :

i∂zA+ iβ′(ω0)∂tA− 1

2
β”(ω0)∂

2
tA+∆β(ω0)A = 0 (48)

Using T = t− β′(ω0)z and considering non-linearlity we obtain the NLSE

i∂zA− 1

2
β”(omega0)∂

2
TA+ γ|A|2A = 0 (49)

where the non-linear coefficient γ is :

γ(ω0) = −ω0

c
n2(ω0)

∫ +∞
−∞

∫ +∞
−∞ |B(x, y)|4dxdy

(
∫ +∞
−∞

∫ +∞
−∞ |B(x, y)|2dxdy)2

(50)

For a single-mode fiber, the modal distribution B(x, y) corresponds to the fun-
damental fiber mode, given by one of the following expressions:

B(x, y) =

J0(p
√
x2 + y2),

√
x2 + y2 ≤ a

√
a

4
√

x2+y2
J0(pa)e

q
√

x2+y2−a,
√
x2 + y2 > a

(51)

or

B(x, y) = e−
−(x2+y2

w2 (52)

Here, J0 is Bessel function of first kind of order zero, a is the radius of fiber
core, w is the width parameter , and the quantities p =

√
n21k

2
0 = β2 and

q =
√
β2 − n2ck

2
0.
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We got everything but we want it in the form we promised above .So for that
we will make some assumptions like:

A(z, T ) = ψ(x, t)eiαz

where x = αz and t = βT
We substitute this in equation (49) to get :

i
∂ψ

∂t
+
∂2ψ

∂x2
+ 2|ψ|2ψ = 0 (53)

5 Conclusion

In conclusion, the Schrödinger Equation, derived through Hamilton-Jacobi’s
equation, is a foundational element in quantum mechanics with broad appli-
cations in physics, chemistry, biology, and finance. Schrödinger’s application
to the hydrogen atom demonstrated its predictive power, unraveling complex
atomic behaviors.
The evolution into the Non-Linear Schrödinger Equation extended its utility,
particularly in describing nonlinear wave dynamics in various systems. From
subatomic particles to complex structures, both equations remain pivotal in un-
derstanding natural phenomena.
Schrödinger’s legacy persists, guiding ongoing research and technological ad-
vancements. The Schrödinger Equation, in its linear and nonlinear forms, con-
tinues to shape our understanding of the quantum world, inspiring discoveries
that impact diverse scientific disciplines.
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