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Abstract

Shor’s Algorithm is a groundbreaking quantum algorithm that demon-
strates exponential speedup over classical algorithms for integer factoriza-
tion. This paper provides an overview of the algorithm, its theoretical
foundations, and potential implications for modern cryptography. We ex-
plore the mathematical principles behind Shor’s Algorithm and discuss its
significance in the context of quantum computing advancements.

1 Introduction

Quantum computing has emerged as a revolutionary paradigm with the po-
tential to solve certain problems exponentially faster than classical computers.
Given an integer N , Classical factorization algorithms , such as the Number
Field Sieve has a complexity of:

O(exp[(logN)1/3(loglogN)2/3]) (1)

Shor’s quantum factorization has a time complexity of :

O((logN)2(loglogN)(logloglogN)) (2)

Shor’s Algorithm exhibits exponential speedup, threatening the security of
widely used cryptographic schemes based on the difficulty of integer factoriza-
tion.
In this paper, we delve into the fundamental concepts of Shor’s Algorithm,
elucidate its quantum mechanical underpinnings, and discuss its practical im-
plications. The objective is to provide a comprehensive understanding of how
Shor’s Algorithm exploits quantum parallelism and Fourier transform to achieve
exponential speedup in the factorization process.
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2 Theoretical Foundations

Lets take a look at the things we got to know prior to diving deep into the
algorithm.

2.1 Factoring Problem

The factoring problem is a fundamental mathematical task that involves de-
composing a composite number into a product of its prime factors. Given an
integer N, the factoring problem seeks to find two non-trivial integers, usually
prime numbers, whose product equals N.

So basically, we want to write N , and we want to write it as product of :
P e1
1 , P e2

2 , ..., P ek
k where , P ei

i are primes that divide N.
Most difficult case is when : N = P ∗ Q where, P and Q are two distinct

primes .
The factoring problem is of particular significance in the field of number

theory and has practical applications in cryptography. Public-key cryptographic
systems, such as the widely used RSA algorithm, rely on the presumed difficulty
of factoring large numbers to ensure the security of encrypted communications.

2.2 Basics of Modular arithmetic used here

We want to factor : N .
We know , a ≡ b(modN) . This gives : b = qN + a , where , q is quotient , and
a is remainder.

Let us consider an example with : N = 21 as the value we want to factor.
Solve x2 ≡ 1(mod 21) . Basically we are looking for a numberx such that when
a multiple of N is subtracted from x2 , yields 1.
One such number , lets say is 8. So,

82 ≡ 1(mod 21)

82 − 12 ≡ 0(mod 21)

So, 21 divides (8− 1)(8 + 1) . But what are the factors ?
This can be found using gcd : gcd(21, 8 + 1) = 3 , and gcd(21, 8− 1) = 7 so the
factors are 3 and 7 .

Thus, our problem arises when the value x such that x ̸≡ ±1(mod N) but
x2 ≡ ±1(mod N) , in a way that N divides (x+ 1)(x− 1) .
But, since x∓ 1 ̸≡ 0(mod N) so N does not divide (x± 1). And hence :
gcd(N, x+ 1) ̸= gcd(N, x− 1)...
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2.3 Quantum Fourier Transform

Quantum Fourier Transform is exactly same as the discrete fourier transform,
except for the fact that the notations are somewhat different. Quantum Fourier
Transform ( QFT) on an orthonormal basis |0⟩, ..., |N−1⟩ is defined to be linear
operator with the following action on the basis states,

|ψ⟩ = 1√
N

N−1∑
x=0

e2πiϕx|x⟩ (3)

Here, N is the size of the quantum system( also can be given by 2n where n is
the number of qubits), |x⟩ represents the basis states, and ϕ is the phase that
determines the periodicity.

The Quantum Fourier Transform operation on |ψ⟩ is defined as:

QFT |ψ⟩ = 1√
N

N−1∑
y=0

N−1∑
x=0

e2πixy/N |ψx⟩ (4)

Where |ψx⟩ is the state obtained by applying the phase shift e2πiϕx to each basis
state |x⟩ in |ψ⟩.

The QFT operation is implemented using quantum gates. For n-qubit quantum
systems, the QFT circuit can be represented as:

QFTn = H⊗n ·R(n−1)
2π · . . . ·R(1)

2π (5)

Here, H is the Hadamard gate, and R
(k)
2π represents a controlled rotation gate.

Algorithm 1 Quantum Fourier Transform (QFT)

1: procedure QFT(n)
2: Create a quantum circuit with n qubits
3: for q in range n do
4: Apply Hadamard gate on qubit q
5: for t in range (q + 1, n) do
6: Apply controlled phase gate with angle π

2(t−q) from qubit q to
target qubit t

7: end for
8: end for
9: Swap the qubits (reverse their order)

10: end procedure

The circuit for the Quantum Fourier Transform is :
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Figure 1: Quantum Fourier Transform

3 Shor’s Factoring Algorithm

The lemma that we have with us is :
Let N be an odd composite number, with atleast two distinct prime factors,
and let x be another uniformly random number between 0 and N − 1 . If
gcd(x,N) = 1 then with probability of atleast 1

2 , order r of x(mod N) is even

, and xr/2 is a non- trivial square root of 1(modN).
So, if N divides (xr/2 − 1)(xr/2 +1) then gcd(N, xr/2 − 1) and gcd(N, xr/2 +1)
gives us the factors.

The Algorithm is as follows :

Algorithm 2 Shor’s Algorithm

1: procedure Shor(N)
2: Choose a random integer a such that 1 < a < N
3: Use a quantum computer to find the period r of ax mod N (r is the

smallest positive integer such that ar ≡ 1 mod N)
4: if r is even and ar/2 ̸≡ −1 mod N then
5: The factors of N are gcd(ar/2 + 1, N) and gcd(ar/2 − 1, N)
6: else
7: Choose a different random a and repeat the algorithm
8: end if
9: end procedure

The process of finding the period r of fa,N = axmod N is :

1. Prepare two L-bit quantum register in initial state.

 1√
2L

2L−1∑
x=0

|x⟩

 |0⟩ (6)

where , N2 ≤ 2L < 2N2
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2. Apply Uf : |x⟩|0⟩ −→ |x⟩|fa.N (x)⟩ :

1√
2L

2L−1∑
x=0

|x⟩|0⟩ −→ 1√
2L

2L−1∑
x=0

|x⟩|fa.N ⟩ (7)

3.Apply QFT to the first register :

1√
2L

2L−1∑
x=0

|x⟩|fa.N ⟩ −→ 1√
2L

2L−1∑
y=0

2L−1∑
x=0

e2πixy/2
L

|y⟩

 |fa.N ⟩ (8)

4. Make measurement on the register, obtaining y.
5. Find r from y via continued fraction for y/2L . If it fails in some case, repeat
(1).

Figure 2: Shor’s Algorithm

4 Applications and Implications

Shor’s Algorithm, a groundbreaking quantum algorithm, has profound applica-
tions and implications across multiple domains. In this section, we delve into
some of the key areas where Shor’s Algorithm is expected to have a significant
impact.

4.1 Cryptography, Security and Encryption

One of the most noteworthy applications of Shor’s Algorithm is in the field of
cryptography, Security and Encryption. Researchers are actively exploring post-
quantum cryptography to develop encryption schemes that resist the quantum
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threat. The algorithm efficiently factors large composite numbers into their
prime factors, posing a threat to widely used public-key cryptographic systems
such as RSA.

4.2 Optimization Problems

Quantum computers, including those employing Shor’s Algorithm, have the po-
tential to address complex optimization problems more efficiently than classical
computers. Quantum parallelism allows simultaneous evaluation of multiple
possibilities. In certain optimization problems, quantum speedup is captured
by the formula:

Quantum Speedup =
Number of possibilities classically

Square root of the number of possibilities quantumly

Also, the graph below shows the speedup achieved using Shor’s algorithm vs
the classical Number Field Sieve Method:

Figure 3: Speedup with Shor’s Algorithm

4.3 Drug Discovery and Molecular Modeling

Shor’s Algorithm, along with other quantum algorithms, holds promise in the
field of quantum chemistry. Quantum computers can simulate molecular struc-
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tures and interactions more accurately than classical computers.

4.4 Machine Learning

The quantum parallelism in quantum algorithms, including Shor’s Algorithm,
may find applications in machine learning. Quantum computing may provide
speedups in certain machine learning tasks, with the quantum version of the
support vector machine (QSVM) being an example.

5 Conclusion

In conclusion, Shor’s Algorithm is a transformative quantum algorithm with
widespread implications, ranging from the security landscape to optimizations
and various applications in computational science.
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